72,497 research outputs found

    Optimal measurements to access classical correlations of two-qubit states

    Full text link
    We analyze the optimal measurements accessing classical correlations in arbitrary two-qubit states. Two-qubit states can be transformed into the canonical forms via local unitary operations. For the canonical forms, we investigate the probability distribution of the optimal measurements. The probability distribution of the optimal measurement is found to be centralized in the vicinity of a specific von Neumann measurement, which we call the maximal-correlation-direction measurement (MCDM). We prove that for the states with zero-discord and maximally mixed marginals, the MCDM is the very optimal measurement. Furthermore, we give an upper bound of quantum discord based on the MCDM, and investigate its performance for approximating the quantum discord.Comment: 8 pages, 3 figures, version accepted by Phys. Rev.

    String Solitons

    Get PDF
    We review the status of solitons in superstring theory, with a view to understanding the strong coupling regime. These {\it solitonic} solutions are non-singular field configurations which solve the empty-space low-energy field equations (generalized, whenever possible, to all orders in α′\alpha'), carry a non-vanishing topological "magnetic" charge and are stabilized by a topological conservation law. They are compared and contrasted with the {\it elementary} solutions which are singular solutions of the field equations with a σ\sigma-model source term and carry a non-vanishing Noether "electric" charge. In both cases, the solutions of most interest are those which preserve half the spacetime supersymmetries and saturate a Bogomol'nyi bound. They typically arise as the extreme mass=charge limit of more general two-parameter solutions with event horizons. We also describe the theory {\it dual} to the fundamental string for which the roles of elementary and soliton solutions are interchanged. In ten spacetime dimensions, this dual theory is a superfivebrane and this gives rise to a string/fivebrane duality conjecture according to which the fivebrane may be regarded as fundamental in its own right, with the strongly coupled string corresponding to the weakly coupled fivebrane and vice-versa. After compactification to four spacetime dimensions, the fivebrane appears as a magnetic monopole or a dual string according as it wraps around five or four of the compactified dimensions. This gives rise to a four-dimensional string/string duality conjecture which subsumes a Montonen-Olive type duality in that the magnetic monopoles of the fundamental string correspond to the electric winding states of the dual string. This leads to a {\it duality of dualities} whereby under string/string duality the the strong/weak coupling SS-duality trades places with the minimum/maximum length TT-duality. Since these magnetic monopoles are extreme black holes, a prediction of SS-duality is that the corresponding electric massive states of the fundamental string are also extreme black holes.Comment: 150 pages, TeX, submitted to Physics Reports, 3 figures available on reques

    Annealing-induced Fe oxide nanostructures on GaAs

    Get PDF
    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy. These nanostripes; exhibited uniaxial magnetic anisotropy. The formation of these nanostructures is attributed to surface anisotropy, which in addition could explain the observed uniaxial magnetic anisotropy

    Quantum correlations in a cluster-like system

    Full text link
    We discuss a cluster-like 1D system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system, and well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord and mutual information. We study the different divergency behaviour of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in TQPT systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.Comment: 7 pages, 6 figure
    • …
    corecore